NACH OBEN

  

Plastik-Stühle  im Lernzimmer

Bewertung: 4 / 5

Stern aktivStern aktivStern aktivStern aktivStern inaktiv

Herkömmliche Kunststoffe werden auf Erdölbasis hergestellt und stellen für die Umwelt ein Problem dar, da sie nicht abbaubar sind. Die Arbeitsgruppe um den Konstanzer Chemiker Prof. Dr. Helmut Cölfen hat nun einen völlig neuartigen „Mineral-Kunststoff“ hergestellt, der sich strukturell an Biomaterialien anlehnt. Der Kunststoff ist ein so genanntes Hydrogel, das bei Raumtemperatur aus Kalk (amorphem Calciumcarbonat) und Polyacrylsäure in Wasser hergestellt werden kann. Er kann direkt recycelt oder auch umgeformt werden und ist im gelartigen Zustand „selbstheilend“. In getrocknetem Zustand hat das Hydrogel die Konsistenz einer Krabbenschale und ist biegsam. Das nicht-toxische plastische Material könnte in Zukunft klassische Kunststoffe teilweise ersetzen und dadurch zur Lösung von Umweltproblemen beitragen. Veröffentlicht wurde die Arbeit soeben in der Zeitschrift Angewandte Chemie (DOI: 10.1002/anie.201606536).

Völlig neue Kunststoff-Klasse ist von der Natur inspiriert und leicht abbaubar
Konventionelle Kunststoffe sind in der Regel biologisch nicht abbaubar, und auch der Prozess des Recyclings erfordert wieder Energie. Die Herstellung des Mineral-Kunststoffes durch die Konstanzer Arbeitsgruppe entspricht dem Leitbild der „Grünen Chemie“ und wurde inspiriert durch Mineralisationsprozesse in der Natur, die auf Basis von Calciumcarbonat ablaufen. Das Hydrogel, das Kunststoffe ersetzen könnte, besteht aus Nano-Partikeln von Calciumcarbonat, die durch Polyacrylsäure vernetzt werden. Das ohne Energiezufuhr bei Raumtemperatur entstehende Hydrogel ist formbar und selbstheilend, da sich etwa Risse durch die Zugabe eines Tropfen Wassers von selbst verschließen. Auch das Zusammenfügen zweier (Bau-)Teile ist auf dieselbe Weise möglich. Die Eigenschaft, bei Erhitzen die Farbe zu ändern, ermöglicht zudem einen Einsatz des Gels als Temperatursensor. Dadurch, dass das Material durch Wasserzugabe leicht und ohne Energieaufwand umgeformt werden kann, ist das Recycling problemlos. Durch Zugabe einer schwachen Säure, etwa von Essig- oder Zitronensäure, löst es sich sprudelnd durch Freisetzung von Kohlendioxid auf. Die zurückbleibende Polyacrylsäure ist ungiftig.

Synthese eines „Mineral-Kunststoffes“ (hier: eines supramolekularen ACC/PAA-Hydrogels) durch Mischen von Calciumchlorid, Natriumcarbonat und Polyacrylsäure in Wasser.Synthese eines „Mineral-Kunststoffes“ (hier: eines supramolekularen ACC/PAA-Hydrogels) durch Mischen von Calciumchlorid, Natriumcarbonat und Polyacrylsäure in Wasser.Das "grüne Plastik" ist kostengünstig und lässt sich in großen Mengen problemlos herstellen
„Das Verfahren der Herstellung des Hydrogels ist unmittelbar für die Industrie adaptierbar, zumal die Ausgangsmaterialien kostengünstig großtechnisch hergestellt werden“, erläutert Helmut Cölfen. Nach Trocknung erhält man ein Material wie Plastik, das nicht leicht zerbricht und biegsam ist. Dadurch ist es als Ersatz für herkömmliches Plastikmaterial für Anwendungen in Trockenheit geeignet, etwa für Elektonikbauteile. Als Weiterentwicklung wäre an Überzugsmaterialien zu denken, die dann aber das Recycling möglichst nicht beeinflussen sollten. Die besondere Quellfähigkeit und gleichzeitige Härte nach Trocknung macht das Material für Bauanwendungen interessant, um Risse aufzufüllen.
Im Vergleich zu Biomineralien ist das Hydrogel formbar, während etwa Knochen oder Zähne hart sind, sobald das Biomineral fertig ausgebildet wurde.

Nicht nur im Hinblick auf diese in der Natur ablaufenden Prozesse ist es für die Arbeitsgruppe um Helmut Cölfen an der Universität Konstanz daher interessant, wie die Eigenschaften solcher Gele systematisch verändert und damit noch weitere „Mineral-Kunststoffe“ für spezielle Anwendungen hergestellt werden können. Künftige Forschungsvorhaben werden die neue Substanzklasse auch daraufhin unter die Lupe nehmen, welche medizinischen Anwendungen denkbar sind. Unter anderem sollen weitere Mineralien als Ausgangsstoff getestet werden, und es ist daran gedacht, Polyasparaginsäure als Vernetzungsmittel einzusetzen. Diese ist vollständig biologisch abbaubar.
Originalpublikation: „Hydrogele aus amorphem Calciumcarbonat und Polyacrylsäure: Bioinspirierte Materialien für ‚Mineral-Kunststoffe‘“. Shengtong Sun, Li-Bo Mao, Zhouyue Lei, Shu-Hong Yu und Helmut Cölfen. Angewandte Chemie (DOI: 10.1002/anie.201606536).

Text: Julia Wandt Stabsstelle Kommunikation und Marketing Universität Konstanz, Einleitungs- und Beitragsbild pixabay    

PlastikalternativenMehr über Plastikalternativen erfahren? Hier klicken! 

 Chicorée-Salat-Abfälle bald schon der Rohstoff für Flaschen

Bewertung: 0 / 5

Stern inaktivStern inaktivStern inaktivStern inaktivStern inaktiv

Qualitätsprodukte aus Abfall der Lebensmittelproduktion: Wissenschaftler der Universität Hohenheim gewinnen Basis-Chemikalien für Chemie-Industrie aus Wurzelrübe des Chicorée
Rund 800.000 Tonnen: diese Mengen an Chicorée-Wurzelrüben fallen jährlich europaweit bei der Produktion von Chicorée-Salat als Abfallprodukt an. Die Wurzelrüben werden bisher nach der Ernte des Chicorée-Salats auf der Kompostierungsanlage oder in der Biogasanlage entsorgt. Viel zu schade, so die Ansicht zweier Forscherinnen der Universität Hohenheim. Denn aus diesen Wurzelrüben lässt sich Hydroxymethylfurfural (HMF) gewinnen, eines der Basisstoffe in der Kunststoffindustrie von morgen.         

Ein fensterloser Raum auf der Versuchsstation des Hohenheimer Universitätsgeländes. An den Wänden stehen Regal-Türme mit 3 Etagen voll Wannen, ausgekleidet mit Teichfolie. Darin stehen in Kunststoffkörben aufrecht die 15-20 cm langen Wurzelrüben, aus denen verkaufsfähige Chicorée-Salatknospe innerhalb von 3 Wochen wachsen. Eine Aquariumpumpe umspült die Pflanzen mit einer Nährlösung. Es ist dunkel, damit die Salatblätter in einem gelben Pastellton verbleiben und keine der Chicorée-typischen Bitterstoffe bilden, die den Verzehr beeinträchtigen könnten. Ähnlich wie in dieser Versuchsanlage – nur um ein Vielfaches größer – sieht es bei der kommerziellen Produktion von Chicorée-Salat in so genannten Wasser-Treibereien aus: Denn die zweijährige Chicorée-Pflanze verbringt nur die ersten fünf Monate auf dem Acker. Mitte Oktober werden die Blätter abgemulcht, die Wurzelrüben geerntet, kühl gelagert und dann in die Treibräume gebracht. Erst dort treiben neue Blattknospen aus, die als Chicorée-Salat genutzt werden.
Doch anders als in der Lebensmittelproduktion interessiert sich die Universität Hohenheim vor allem für den nicht-essbaren Rübenanteil. „Die Wurzelrübe macht ca. 30 % der Pflanze aus. Die eingelagerten Reservekohlenhydrate werden für die Bildung der Salatknospen nicht vollständig aufgebraucht, so dass wertvolle Reservestoffe verbleiben. Die Wurzelrüben können jedoch nur einmal für die Chicorée-Treiberei genutzt werden, fallen nach der Knospenernte als Abfallstoff an und müssen entsorgt werden.“, erklärt Agrarbiologin Dr. Judit Pfenning.

Nylon, Polyester, Perlon oder Kunststoffflaschen
Wie wertvoll diese Wurzelrübe tatsächlich ist, zeigt Prof. Dr. Andrea Kruse wenige Schritte entfernt in einem Labor des Instituts für Agrartechnik. Im Hintergrund stehen Bleistift-große Rohrreaktoren aus Edelstahl, die mit Häckseln der Chicorée-Wurzelrübe und Wasser befüllt werden. Die ultrastabilen Druckbehälter werden mit verdünnter Säure versetzt und bis zu 200 Grad erhitzt. Das wässrige Produkt wird anschließend in weiteren Schritten aufbereitet, die der Geheimhaltung unterliegen. Am Ende erhält ihr wissenschaftlicher Mitarbeiter Dominik Wüst ein gelb bis braun gefärbtes kristallines Pulver: ungereinigtes Hydroxymethylfurfural (HMF). Es ist eine von 12 Basischemikalien, die zukünftig in der Kunststoffindustrie verwendet werden. Es dient als Ausgangsstoff für Nylon, Perlon, Polyester oder Kunststoffflaschen – sogenannten PEF-Flaschen im Gegensatz zu den PET-Flaschen. Der Wert im Chemikalien-Großhandel liegt aktuell bei 2000 Euro das Kilo.

HMF aus Chicorée als Teil der Bioökonomie
Bisher werden solche Chemikalien aus Erdöl gewonnen. Wie sie sich nachhaltig produzieren lassen, ist eine Fragestellung der Bioökonomie. Denn diese setzt auf Energie und Rohstoffe aus Pflanzen, Tieren oder Mikroorganismen statt weiterhin auf fossile Rohstoffe. In einem früheren Forschungsprojekt gelang es Prof. Dr. Kruse bereits, die Basischemikalie HMF aus Fruchtzucker – sog. Fructose – zu gewinnen. Die Gewinnung aus Chicorée-Wurzelrüben findet sie eleganter. Denn: „Fructose ist essbar. Es gibt bessere Verwendungszwecke als HMF daraus zu gewinnen.“ Anders die Chicorée-Wurzelrübe. „Sie ist bislang nur ein Abfallprodukt.“

Die Herausforderung: Lagerung und Qualität der Wurzelrüben Eine Herausforderung bei dem Projekt: „Nur wenn wir es schaffen, eine gleichbleibende Qualität zu gewährleisten, ist die Wurzel für die Industrie interessant“, erklärt Prof. Dr. Kruse. Deshalb kooperiert die technische Chemikerin mit der Pflanzenwissenschaftlerin Dr. Judit Pfenning vom Fachgebiet Allgemeiner Pflanzenbau. „Die Voraussetzungen sind an sich gut“, erklärt Dr. Pfenning. „auch der Verbraucher, der Chicorée essen will, stellt hohe und einheitliche Qualitätsansprüche an die Chicorée-Salatknospen. Deshalb gelangen nur vergleichsweise einheitliche, höherwertige Wurzelrüben vom Acker in die kommerzielle Wasser-Treiberei.“ Ein weiterer Forschungsaspekt: Wie lassen sich die Wurzelrüben lagern, ohne dass sie an Qualität verlieren. Denn die Chicorée-Produktion ist Saisongeschäft. Die Zulieferer der chemischen Industrie wünschen sich aber eine gleichbleibende Lieferung, um ihre Anlagen kontinuierlich auszulasten. „Es ist ein Projekt, das sich nur durch interdisziplinäre Zusammenarbeit umsetzen lässt“, betonen die Wissenschaftlerinnen. Zum einen die Qualitätskontrollen, Anbau- und Lagerungsversuche im Pflanzenbau, zum anderen die Laborexperimente in der Konversionstechnologie.

HMF aus Chicorée-Wurzelrüben ist hochwertiger als die Chemikalie aus Erdöl
Ein weiterer Aspekt macht das Projekt noch aussichtsreicher: „Die Chicorée-Wurzelrübe eignet sich nicht nur deshalb so gut zur Gewinnung von HMF, weil sie ein Abfallprodukt ist“, betont Prof. Dr. Kruse. „Sie produziert auch eine höherwertige Chemikalie als das Äquivalent aus Erdöl.“ Dadurch könnten PEF-Flaschen aus Chicorée-HMF beispielsweise dünner gezogen werden, als solche aus Erdöl-PET. Das spart Transportkosten und verbessert die Umweltbilanz noch weiter. Ein Teil des Aufkommens an Chicorée-Wurzelrüben wird heute verwendet, um daraus Biogas zu erzeugen. Doch diese Verwendung sei ökonomisch gesehen unterlegen: „Aus ca. 220.000 Wurzelrüben pro Hektar können theoretisch 8,14 Tonnen Inulin gewonnen werden. Das kann nach aktuellem Forschungsstand zu 2,87 Tonnen HMF umgewandelt werden. Über den Verkauf dieser Menge können ca. 5,74 Millionen Euro erzielt werden. Strom aus Biogas dieser Menge Wurzelrüben würde nach EEG jedoch nur rund 21.000 Euro generieren.“

Text: Florian Klebs Presse- und Öffentlichkeitsarbeit Universität Hohenheim    Bilder: pixabay

Auto EinlVielleicht auch interessant: Joseph-von-Fraunhofer-Preis: Autoreifen aus Löwenzahnpflanzen

Pflanzen und Roboter sollen im Projekt „flora robotica“ künftig untereinander und mit dem Menschen kommunizieren können.

Bewertung: 5 / 5

Stern aktivStern aktivStern aktivStern aktivStern aktiv

Deutschland, Dänemark, Österreich und Polen an 3,6 Mio. Euro-Projekt beteiligt
Die Kommunikation zwischen Menschen, Pflanzen und Maschinen ermöglichen und dabei Städte neugestalten: Seit 2015 forschen Wissenschaftlerinnen und Wissenschaftler aus vier Nationen unter der Leitung der Universität Paderborn im Projekt „flora robotica“ an intelligenten Pflanzen. An dem von der EU geförderten Forschungsprojekt sind Informatiker, Robotiker, Zoologen, Zellbiologen, Mechatroniker und Architekten aus Deutschland, Dänemark, Österreich und Polen beteiligt. Insgesamt wird das Projekt mit rund 3,6 Mio. Euro gefördert.

„Diese „intelligenten“ Pflanzen sollen künftig – von Roboterschwärmen angeleitet – unsere Städte architektonisch beleben: Von der kontrolliert begrünten Wand bis hin zu ganzen Häusern aus lebender Biomasse“, erläutert Prof. Dr. Heiko Hamann vom Heinz Nixdorf Institut der Universität Paderborn das Projekt. Um dies zu erreichen, entwickelt das internationale Forscherteam sogenannte „biohybride Gesellschaften“ aus Roboterschwärmen und Pflanzen. Neuartige im Projekt entwickelte Technologien machen es erstmals möglich, dass Menschen, Pflanzen und Roboter miteinander auf hohem Niveau kommunizieren und gemeinsame Ziele erreichen können.

Eine der großen Herausforderungen im Forschungsprojekt „flora robotica” ist der Aufbau eines Kommunikationsnetzwerkes zwischen Pflanzen, Menschen und Robotern. Dazu haben die Wissenschaftler völlig neuartige Kommunikationskanäle entwickelt, die sowohl das kurzfristige wie auch das langfristige Wachstum der Pflanzen beeinflussen können: „Die Roboter können den Pflanzen mitteilen, in welche Richtung sie wachsen sollen und die Pflanzen können den Robotern bekannt geben, was sie dafür brauchen, z. B. Wasser oder Licht“, so Hamann.

Pflanzen und Roboter sollen im Projekt „flora robotica“ künftig untereinander und mit dem Menschen kommunizieren können. Foto:Universität PaderbornPflanzen und Roboter sollen im Projekt „flora robotica“ künftig untereinander und mit dem Menschen kommunizieren können. Foto:Universität PaderbornRoboter als Dolmetscher zwischen Mensch- und Pflanzenwelt
Die Roboter kommunizieren aber nicht nur mit den Pflanzen, sie werden auch zu Vermittlern und Dolmetschern zwischen der Menschen- und der Pflanzenwelt. „Wir Menschen können somit erstmals strukturiert, gezielt und geplant an einer völlig neuartigen Pflanzenarchitektur arbeiten“, verdeutlicht Prof. Dr. Heiko Hamann. Forscher erhalten erstmals durch die Roboter in „Echtzeit” Informationen über den Zustand der Pflanzen, wie z. B. Nährstoffmangel. Sie können so darauf reagieren, bevor negative Auswirkungen auf die Pflanze entstehen können. Umgekehrt können auch die Forscher über die Roboter Pflanzen Informationen zukommen lassen. Etwa ob die Pflanze gerade die jeweilige gewünschte architektonische Form bildet oder ihr Wachstum anders ausrichten muss.

Intelligente Pflanzen bauen nachhaltige lebenswerte Umwelten
Bereits jetzt werden Roboter immer wieder eingesetzt, um Pflanzenwachstum zu beeinflussen, etwa in automatisierten Gewächshäusern. In flora robotica gehen die Wissenschaftler einen entscheidenden Schritt weiter: Ihr Ziel ist es, das Pflanzenwachstum durchgehend zu beeinflussen und auf diese Weise innovative neue architektonische Gebilde entstehen zu lassen. Die Roboter werden zu einer Art „Baumeister“ einer völlig neuartigen Pflanzenarchitektur. Die intelligenten Pflanzen sollen künftig dabei helfen, nachhaltige Städte und Lebenswelten aufzubauen, von “lebendigen Mauern” über Möbel bis hin zu ganzen Häusern. Im Projekt flora robotica nimmt aber auch architektonische Ästhetik einen wichtigen Platz ein und es entstehen neue, sich permanent ändernde, ressourcenschonende, architektonische Systeme.

Technologie, die „das Sprechen“ mit Pflanzen möglich macht
Technisch ermöglicht die Kombination einer Vielzahl von Sensoren die Kommunikation zwischen Robotern und Pflanzen. Diese Sensoren funktionieren auf der Basis von verfügbarer Technologie, wie einfachen Abstandssensoren und anderen optischen Sensoren. Zusätzlich hat das Forscherteam aber auch neue Technologien entwickelt: wie Biomassesensoren, die auf der Verzerrung von elektromagnetischen Feldern basieren, oder auch Transpirationssensoren und Sensoren, die den Saftfluss (Xylemsaftfluss) messen.
Manche der symbiotischen Roboter sind stationär, andere wiederum bewegen sich langsam fort, um mit dem Pflanzenwachstum Schritt zu halten. Schnell hingegen funktionieren die Kontrollmechanismen der Roboter, welche die Pflanzen durch Hochintensitäts-LEDs und Vibrationsmotoren beeinflussen. Weiterhin benutzen die Forscher blaues Licht, um die Pflanzen über sogenannten „Phototropismus” zu steuern, indem ihre Wachstumsspitze von der Lichtquelle angelockt wird. Eingesetzt wird aber auch Licht im sogenannten „far-red”-Bereich (zwischen dem Spektrum von sichtbarem und infrarotem Licht), um auf Pflanzen gezielt abstoßend zu wirken. Gleichzeitig werden Vibrationsmotoren eingesetzt, um das Wachstum auf bestimmte Teilbereiche zu beschränken.

In den bisherigen Experimenten wurde das Zusammenspiel zwischen Robotern und einer Vielzahl von verschiedenen Pflanzenarten, wie zum Beispiel Bambus, Bohnen, Bananen oder Tomaten bereits erfolgreich getestet.

Text: Vanessa Dreibrodt Stabsstelle Presse und Kommunikation Universität Paderborn, unbennante Bilder:pixaby,   big merci

Fisch KorallenVielleicht auch interessant: Mikroroboter, die Wasser reinigen können oder eine Glosse über das „Bosco Verticale“ in Mailand

Puls EKG Herzschläge

Bewertung: 5 / 5

Stern aktivStern aktivStern aktivStern aktivStern aktiv

Wie Luftverschmutzung zu Herzkrankheiten führen kann, erforscht Dr. Dennis Wolf, Klinik für Kardiologie und Angiologie I des Universitäts-Herzzentrums Freiburg - Bad Krozingen und wurde dafür von der Europäischen Gesellschaft für Kardiologie ausgezeichnet. Dr. Wolf wies bei Mäusen nach, dass Feinstaub entzündungsfördernde Zellen aktiviert und damit zu größeren und folgenreicheren Herzinfarkten führt. Der Preis, der Ende letzten Jahres in Wien übergeben wurde, gilt als höchste wissenschaftliche Auszeichnung für unveröffentlichte Arbeiten auf dem Gebiet der akuten kardiovaskulären Medizin.         

Mehr als sieben Millionen Todesfälle jährlich werden auf Luftverschmutzung zurückgeführt. Als häufigste Folgen der Verschmutzung gelten Herzinfarkt und Schlaganfall. Zwar ist bereits bekannt, dass Feinstaub das Herzinfarkt-Risiko und die Sterblichkeit erhöht. Die Ursachen dafür waren bislang aber nicht klar.


Einmalige Feinstaub-Belastung erhöht Herzinfarkt-Risiko
„Wir konnten bei Mäusen zeigen, dass selbst eine einmalige Feinstaub-Belastung zu größeren und entzündlicheren Herzinfarkten führt“, sagt Dr. Wolf. Als Antreiber der Entzündung konnten der Kardiologe und Kollegen bestimmte Immunzellen der Lunge identifizieren, sogenannte alveoläre Makrophagen.
Nach den Erkenntnissen der Freiburger Forscher geben diese Zellen entzündungsfördernde Faktoren ins Blut ab, welche zu einer Anreicherung von Immunzellen im Herzen führt. Der dort einsetzende Entzündungsprozess führte nicht nur dazu, dass vermehrt Herzmuskelgewebe vom Infarkt betroffen war, sondern auch dazu, dass in der Folge eine ausgeprägtere Herzmuskelschwäche eintrat. „Unsere Ergebnisse und klinische Studien belegen eindrucksvoll, dass Feinstaub einen deutlichen und direkten Einfluss auf unser Herzkreislaufsystem hat, der bisher sicherlich unterschätzt wurde“, so der Kardiologe.

Feinstaub ist nicht gleich Feinstaub
In vielen Regionen Deutschlands werden an manchen Tagen im Jahr hohe Feinstaub-Belastungen gemessen. „Unsere Daten zeigen, dass eine Gefährdung auch dann vorliegt, wenn die Belastung nur kurz anhält“, sagt Dr. Wolf.
Welchen Einfluss Feinstaub auf die Gesundheit hat, ist nicht einfach zu erforschen. Denn anders als im Labor setzt sich Feinstaub in der Luft aus einer Vielzahl unterschiedlicher Partikel zusammen. Auch variiert dessen Zusammensetzung Feinstaub regional und saisonal, was eine Verallgemeinerung von klinischen Studien erschwert. Laborstudien arbeiten in der Regel mit standardisierten Partikeln und an Tieren. Auch hier lassen sich die Ergebnisse nicht direkt übertragen. „Es lässt sich aber eine eindeutige Tendenz der Schädigung sowohl in klinischen wie auch in Laborstudien erkennen“, sagt Dr. Wolf. 

Verliehener Forschungspreis hoch angesehen
Der Forschungspreis ist mit 3.000 Euro dotiert und wird von der Acute Cardiovascular Care Association (ACCA) verliehen, die zur Europäischen Gesellschaft für Kardiologie gehört. „Dr. Wolf leistet mit seiner Forschung einen wesentlichen Beitrag dazu, eine  bislang unterschätzte Gefahrenquelle für Herzinfarkt genauer zu verstehen“, sagt Univ.-Prof. Dr. Christoph Bode, Ärztlicher Direktor der Klinik für Kardiologie und Angiologie I des Universitäts-Herzzentrums Freiburg - Bad Krozingen.

Text: Universitäts-Herzzentrum Freiburg - Bad Krozingen Bilder: Pixabay 

Mehr über die Thematik: Feinstaub

Haussperzling Spatz

Bewertung: 0 / 5

Stern inaktivStern inaktivStern inaktivStern inaktivStern inaktiv

Wien - Als "Spatzenhirn" bezeichnet zu werden, sollte man künftig als Kompliment gelten lassen: Ein internationales Team von Kognitionsbiologen um Tecumseh Fitch von der Universität Wien hat herausgefunden, dass Vögel trotz ihres kleinen Gehirns relativ gesehen signifikant mehr Neuronen aufweisen als jene von Säugetieren. Mehr Neuronen bedeuten auch mehr Gehirnleistung, was insbesondere bei Raben und Papageien, die für ihre Klugheit bekannt sind, überproportional ausgeprägt ist. Ihre Ergebnisse publizieren die ForscherInnen aktuell in der renommierten Fachzeitschrift PNAS.

Dass Vögel kluge Tiere sind, haben ForscherInnen in den letzten Jahren immer wieder bewiesen: Raben und Häher wissen, wenn sie jemand beim Verstecken von Futter beobachtet hat, und suchen ein neues Versteck, wenn der Beobachter weg ist; Elstern erkennen ihr eigenes Spiegelbild, und Neukaledonische Krähen stellen komplizierte Werkzeuge her und verwenden sie. Papageien sind neben Menschen die einzigen, die ohne Training zu einem Takt tanzen können, einige trommeln sogar mit Stöcken auf Bäume. Graupapageien können hunderte Wörter erlernen und sie sinnvoll einsetzen: Aber wie können Vögel solche geistigen Meisterleistungen mit einem vergleichsweise kleinen Gehirn vollbringen?

Ein Team von WissenschafterInnen aus Tschechien, den USA und Österreich um Tecumseh Fitch vom Department für Kognitionsbiologie der Universität Wien hat die Antwort gefunden: Vögel haben eine effizientere neurale Architektur, die es ermöglicht, mehr Neuronen in kleineren Gehirnen unterzubringen als es bei Säugetieren der Fall ist. Neuronen sind individuelle Gehirnzellen, die die kognitiven Berechnungen durchführen. Mehr Neuronen heißt daher höhere "Rechenleistung". Zusätzlich sind bei Gehirnen besonders kluger Vögel wie Raben und Papageien unverhältnismäßig mehr Vorderhirnneuronen an der komplexen Kognition beteiligt.

Ein Team um Pavel Němec von der Karls Universität in Prag setzte eine neue Technik zur Zählung der Neuronen in den Gehirnen von 28 Vogelarten ein. Das verblüffende Ergebnis: Bei Singvögeln und Papageien liegt eine sehr hohe Anzahl an Neuronen in viel höherer Dichte als bei Säugetieren vor. Die neue Technik, die von Suzana Herculano-Houzel von der Vanderbilt Universität in den USA entwickelt wurde, wurde bisher nur an Säugern angewandt und ermöglicht ein schnelles und präzises Zählen der Neuronen.

SpatzenhirnDie Illustration zeigt anschaulich die unterschiedliche Neuronenverteilung von Vögeln (links Spalte) und Säugetieren (rechte Spalte) sowie den Vergleich der Gehirnmasse. Copyright: Tecumseh Fitch, Universität Wien

"Menschliche Gehirne und jene von anderen Säugern lagern ihre Neuronen in den sogenannten Neokortex ein, ähnlich einer Schichttorte", erklärt Co-Autor Tecumseh Fitch vom Department für Kognitionsbiologie der Universität Wien. "Diese Torte kann jedoch maximal sechs Schichten haben. Bei einer Erhöhung der Neuronenzahl kann daher nur zur Seite hin erweitert werden. Dies geht jedoch mit einer Zunahme der Distanzen zwischen den einzelnen Neuronen einher, dessen Verbindungen untereinander sehr viel Platz einnehmen". Beim Menschen benötigen diese Verbindungen (weiße Substanz des Kortex) fast die Hälfte des Platzes.

Vögel haben im Gegensatz dazu eine nukleare Architektur, die eine effizientere Einlagerung der Neuronen ermöglicht. "In Vogelgehirnen sind die Neuronen wie Rosinen im Pudding verteilt und sie können dort eingebaut werden, wo sie nötig sind – ohne viel Platz für lange Verbindungen zu verschwenden", erklärt der Kognitionsbiologe und vergleicht die Architektur des Vogelgehirns mit einem neuartigen Computerchip mit einer höheren Anzahl von Transistoren auf einer kleineren Silikonunterlage. Da evolutionär gesehen auf verbesserte Flugfähigkeiten durch eine Verringerung des Fluggewichtes selektiert wurde, ist es sehr wahrscheinlich, dass hier der Weg eines effizienteren, kompakteren und damit auch leichteren Gehirns eingeschlagen wurde.

Co-Autoren bei dieser Studie sind Seweryn Olkowicz, Martin Kocourek, Radek Lučan und Michal Porteš von der Karls Universität in Prag.
Quelle: Stephan Brodicky Öffentlichkeitsarbeit, Universität Wien / Einl.bild: Pixabay

Publikation in "PNAS":
Birds have primate-like numbers of neurons in the forebrain: Seweryn Olkowicz, Martin Kocourek, Radek Lučan, Michal Porteš, W. Tecumseh Fitch, Suzana Herculano-Houzel, Pavel Němec. 
In PNAS Online Early Edition http://www.pnas.org/cgi/doi/10.1073/pnas.1517131113
Doi: 10.1073/pnas.1517131113

Biene
Lesen Sie dazu:
Honigbienen live bei der Arbeit

 

 

Bewertung: 5 / 5

Stern aktivStern aktivStern aktivStern aktivStern aktiv

Leipzig - In Kunststoffen sind immer Weichmacher enthalten, bspw. Phthalate. Über die Haut oder die Nahrung können sie in unseren Körper gelangen. Sie wirken auf unser Hormonsystem und stehen im Verdacht, Einfluss auf das Körpergewicht zu nehmen. Die genauen Zusammenhänge und Mechanismen waren bislang noch unklar. Forscher des Helmholtz-Zentrums für Umweltforschung (UFZ) konnten nun in Kooperation mit dem Integrierten Forschungs- und Behandlungszentrum (IFB) Adipositas Erkrankungen der Universität und des Universitätsklinikums Leipzig in ihrer in PLOS ONE veröffentlichten Studie zeigen, dass das Phthalat DEHP zu einer Gewichtszunahme führt und welche Stoffwechselprozesse daran beteiligt sind.

Jeder zweite Erwachsene in Deutschland ist übergewichtig. Bei Kindern und Jugendlichen sind es bereits rund 15 Prozent. „Die Zahlen sind alarmierend“, sagt Prof. Martin von Bergen, Leiter des Departments Molekulare Systembiologie am Helmholtz-Zentrum für Umweltforschung (UFZ). „Denn mit jedem Kilo, das zu viel ist, erhöht sich das Gesundheitsrisiko für Herzkreislauferkrankungen, Gelenkschäden, chronische Entzündungen und Krebs. Und die Zahl der Menschen mit Übergewicht steigt weltweit stetig an.“ Für die Entwicklung von Übergewicht gibt es viele Ursachen: Neben falschen Ernährungsgewohnheiten und Bewegungsmangel spielen sicherlich auch genetische Faktoren eine Rolle. Aber auch bestimmte Umweltschadstoffe – zum Beispiel Phthalate – können für die Entwicklung von Übergewicht mitverantwortlich sein. „In epidemiologischen Studien wurden bereits ernstzunehmende Zusammenhänge zwischen erhöhten Phthalat-Konzentrationen im menschlichen Körper und der Entwicklung von Übergewicht nachgewiesen und sollten deswegen weitergehend mechanistisch untersucht werden“, sagt von Bergen.

In der Kunststoffverarbeitung werden Phthalate als Weichmacher eingesetzt, um Kunststoffe weich, biegsam oder dehnbar zu machen. Unter bestimmten Bedingungen können Phthalate aber auch aus dem Material austreten und über die Nahrung in unseren Körper aufgenommen werden. Bei Lebensmittelverpackungen treten Phthalate insbesondere in fetthaltige Produkte über, beispielsweise in Käse oder Wurst. Von Bergen: „Bislang ist kaum etwas darüber bekannt, wie genau Phthalate im Körper wirken, und wie sie Einfluss auf das Körpergewicht nehmen können – und genau da wollten wir mit unserer Studie ansetzen.“

Von Bergen und sein UFZ-Team haben die Studie in Kooperation mit Forschern des Integrierten Forschungs- und Behandlungszentrums (IFB) Adipositas-Erkrankungen der Universität und des Universitätsklinikums Leipzig um PD Dr. Nora Klöting und Prof. Matthias Blüher (Sprecher des Sonderforschungsbereichs „Mechanismen der Adipositas“) durchgeführt, die kürzlich im Fachmagazin PLOS ONE veröffentlicht wurde. Ihre Ergebnisse zeigen, wo Phthalate in den Stoffwechsel eingreifen und den Weg für eine Gewichtszunahme ebnen können. In Untersuchungen an der Universität Leipzig nahmen Mäuse, die dem Phthalat DEHP im Trinkwasser ausgesetzt waren, deutlich an Gewicht zu. Dies war vor allem bei den weiblichen Tieren der Fall. „Phthalate greifen ganz offensichtlich massiv in den Hormonhaushalt ein. Bereits in geringen Konzentrationen führen sie zu deutlichen Veränderungen, wie beispielsweise der Gewichtszunahme“, sagt von Bergen.

ReagenzglasDer Schwerpunkt der Arbeiten am UFZ lag auf der Charakterisierung der Stoffwechselprodukte im Blut der Mäuse. Die Forscher stellten fest, dass der Anteil ungesättigter Fettsäuren im Blut unter Phthalat-Einwirkung zunahm und der Glukosestoffwechsel gestört war. Daneben war auch die Zusammensetzung von im Blut befindlichen Rezeptoren verändert, die für den Gesamtstoffwechsel wichtig sind und zu einer Umstellung des Stoffwechsels führen können. „Einige Stoffwechselprodukte, die vom Fettgewebe gebildet werden sind unter anderem auch als Botenstoffe aktiv und steuern Funktionen in anderen Organen“, erläutert von Bergen. „Noch ist aber nicht abschließend geklärt, wie sich die unterschiedlichen Effekte von Phthalaten auf den Stoffwechsel untereinander beeinflussen und letztlich zu einer Gewichtszunahme führen.“

Gemeinsam mit seinen Kollegen von der Universität und des Universitätsklinikums Leipzig wird von Bergen den Einfluss von Phthalaten auf den Stoffwechsel weiter erforschen. Ihre Wirkung auf die Entwicklung frühkindlicher Erkrankungen untersucht er darüber hinaus gemeinsam mit UFZ-Kollegen aus dem Department Umweltimmunologie im Rahmen der Mutter-Kind-Studie LiNA. „Unser Ziel ist es, solide Grundlagenforschung zu betreiben, damit unsere Ergebnisse dann den für die Risikobewertung von Chemikalien zuständigen Behörden auf deutscher und europäischer Ebene helfen können, ihre Bewertungen vorzunehmen“, so von Bergen.
Quelle: Text: Susanne Hufe Presse- und Öffentlichkeitsarbeit, Helmholtz-Zentrum für Umweltforschung - UFZ/Fotos: Pixabay

Publikationen:
„Di-(2-Ethylhexyl)-Phthalate (DEHP) Causes Impaired Adipocyte Function and Alters Serum Metabolites“: Nora Klöting, Nico Hesselbarth, Martin Gericke, Anne Kunath, Ronald Biemann, Rima Chakaroun, Joanna Kosacka, Peter Kovacs, Matthias Kern, Michael Stumvoll, Bernd Fischer, Ulrike Rolle-Kampczyk, Ralph Feltens, Wolfgang Otto, Dirk K. Wissenbach, Martin von Bergen, Matthias Blüher; PLOS ONE (December 2, 2015). http://dx.doi.org/10.1371/journal.pone.0143190

Die Arbeit wurde unterstützt durch die Deutsche Gesellschaft für Klinische Chemie und Laboredizin (DGKL) die Deutsche Forschungsgemeinschaft (DFG), das Bundesministerium für Bildung und Forschung (BMBF) und die Helmholtz Allianz ICEMED – Visualisierung und Therapie Umweltbedingter Stoffwechselerkrankungen. 

Feltens R, Roeder S, Otto W, Borte M, Lehmann I, von Bergen M, Wissenbach DK: Evaluation of Population and Individual Variances of Urinary Phthalate Metabolites in Terms of epidemiological Studies. Journal of Chromatography & Separation Techniques (accepted)

AKTUELLE NACHRICHTEN

Wärmewende für Berlin

Montag, 16. Januar 2017 11:08
Wärmewende für Berlin – Forschungsprojekt gestartet ►   Wie kann Berlin umwelt- und klimaschonender mit Wärme versorgt werden? ►   Wichtiger Baustein im Berliner Energie- und Klimaschutzprogramm ►   Bernd Hir

Elektromobilität: Mehrheit der deutschen Autokäufer vertraut etablierten Herstellern

Montag, 16. Januar 2017 06:09
McKinsey-Studie: 75 Prozent der Autokäufer bringen traditionellen Unternehmen größtes Vertrauen entgegen – Fast jeder zweite deutsche Kunde zieht E-Auto ernsthaft in Erwägung – Batteriepreise seit 2010 um 80 Prozent gefallen Düsseldorf - Di

Spielwiese Agrarrohstoffe

Sonntag, 15. Januar 2017 09:12
Weizen weckt Begehrlichkeiten. Während in den armen Ländern der Welt die Menschen ihn dringend zum Überleben brauchen, wetten in den Wohlstandsstaaten Hedgefonds auf steigende oder fallende Preise des Getreides. Schon lange verurteilen Umweltschut

 

 

Anzeige

 

 

NEU in der MEDIATHEK

Lang Lang spielt gegen Elfenbeinhandel

Montag, 09. Januar 2017 06:24

Aktuell - schöne Nachricht. China will Elfenbeinhandel bis Ende 2017 komplett verbieten.

Lang Lang spielt gegen den Elfenbeinhandel.

 

 

Grüne Töne  - das neue Album von Neil Young „The Monsanto Years“- ein Album gegen den US- Konzern Monsanto

mehr Videos in unserer Mediathek:



 

ichtragenatur.de will für alle – Konsumenten wie Unternehmen – die Plattform sein, um sich zu sammeln und kennenzulernen, sich miteinander zu vernetzen und dann gemeinsam zu starten mit dem Ziel: mit unseren Ressourcen schonend umzugehen, für eine Umwelt, die allen Menschen das Leben erlaubt und – lebenswert macht.

 

 

REDAKTION

ichtragenatur - Das Magazin

Reitham 14
83627 Warngau
info@ichtragenatur.de
 

Feedback

Sie haben Fragen oder interessante Themen für die Redaktion?
Wir freuen uns über Ihre Nachricht.